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Abstract
 Lepidium meyenii is a medicinal edible plant that have nutritional and 

therapeutic benefits due to synthesis of bioactive compounds. The main 
phytochemicals found in Lepidium meyenii can be categorized into six classes: 
glucosinolates and isothiocyanates, thiohydantoins, macaene and macamides, 
alkaloids, polysaccharides, and fatty acids. These compounds show a wide range of 
biological activities, which include antioxidant, anti-inflammatory, antimicrobial, 
cytotoxic, and immunomodulatory activities. Hereby, the objective of this review 
is to provide a wide comprehension of the nutraceutical properties of Lepidium 
meyenii. For that, we review and critically discussed original manuscripts 
describing the chemical and nutritional composition, as well as biological activities 
of Lepidium meyenii extracts. We showed that the nutraceutical properties of the 
belowground part of Lepidium meyenii shows great variations that are dependent 
of differences of phenotype, place of cultivation, type of soil, environmental 
conditions, and time of harvest. Additionally, we have demonstrated that diet 
supplementation with Lepidium meyenii may exert several health prophylactics 
benefits.
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Introduction
Traditional medicine is intrinsically based on health knowledge and beliefs 

about herbs, spiritual therapies, manual techniques and exercises in order 
to maintain well-being and to treat or to prevent diseases [1, 2]. Plants are 
historically used by communities that have scarce access to modern medicine 
treatments. These communities are usually economically vulnerable populations 
in isolated areas, such as in villages, provinces, islands and tribes far from large 
cities or urban centers [3, 4]. Therefore, the use of plants and traditional medicine 
for these populations is fundamental for the maintenance of the life of these 
individuals and to ensure basic healthcare [5].

Medicinal edible plants and plant-derived foods have nutritional and 
therapeutic benefits due to synthesis of bioactive compounds, which are 
responsible for the pharmacological activities and nutritional value [6-9]. These 
bioactive compounds encompass alkaloids, phenolic compounds (phenolic 
acids, flavonoids, lignans, stilbenes, and tannins), steroids, glucosides, tannins, 
terpenoids, and phytoalexins [10-13]. These compounds show a wide range of 
biological activities, which include antioxidant [14], anti-inflammatory and 
antimicrobial [10], cytotoxic [15, 16], and immunomodulatory activities [17].
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The production of bioactive compounds by the food 
industry has grown significantly due to the pharmacological 
potential of plants and the increasing resistance to chemical 
agents by pathogenic bacteria, parasites, viruses, and fungi 
[18]. Drugs produced from synthetic products might have 
undesirable side effects and, for this reason, a considerable 
part of the drugs used to treat diseases are currently originated 
from natural products [19, 20]. Moreover, several herbal-based 
products have already been patented, such as Ginkgo biloba 
leaves, which have antioxidant effect, and Liuwei Dihuang, a 
medicinal formula composed of 6 Chinese plants that assists 
the process of memory and learning [21, 22]. In this context, 
the research of food-based natural products has grown, and new 
pharmacological activities of several plants have been studied, 
thus increasing the possibility of drug production [23].

 Lepidium meyenii is traditionally found in the Andean 
region of Peru and it has been traded as capsules or powder 
worldwide, due to its medicinal and nutritional potential [24]. 
This includes its capacity to improve spermatogenesis [25-27], 
female and male fertility [28-20], sexual performance [31-33], 
learning and memory [34-36], to reduce risk of osteoporosis 
[37, 38], and to provide protection against ultraviolet radiation 
[39-42], as well as anti-fatigue [43-46], cell protective [47-
49], antioxidant [50-54], and immunomodulatory activities 
[55-57]. Most certainly, these pharmacological activities are 
related to the chemical components of Lepidium meyenii [7, 
58-60]. Therefore, this plant can be considered as nutraceutical, 
which encompass plants and food-based products capable 
of providing treatment or prevention of diseases. In view of 
the rapid advance of the studies with the plant, the objective 
of this work is to present a broad view on the chemical 
composition of the Lepidium meyenii, in order to list the new 
discoveries regarding the chemical constituents, as well as the 
pharmacological activities already tested.

Botanical Description, Cultivation and 
Morphology

The genus Lepidium belongs to the Brassicaceae 
family and encompasses 250 species. Lepidium meyenii is a 
nutraceutical species popularly known as Lepidium meyenii 
[61]. In traditional medicine, this species is named after its 
place of origin, the Peruvian Andes. This region presents 
specific climatic and environmental conditions, such as 
high altitudes, low pressure, low temperature, low humidity, 
intense winds, frequent rain and sunlight, high ultraviolet, and 
cosmic radiation [24]. The aboveground part of the plant is 
composed of a crown with 12 to 20 leaves. The underground 
part comprises the edible part of the plant, which is usually 
referred as the hypocotyl, tuber or root [24, 62]. There are 
different phenotypes of Lepidium meyenii, which are classified 
by the color of the underground part. Nevertheless, the most 
common types used are the red, yellow and black cultivars [24, 
63]. Its cultivation has low requirements, which prevents the 
use of synthetic pesticides. Additionally, its cultivation starts 
at November, whereas its harvesting occurs in June when the 
belowground part are naturally dried [64].

Historical Traditional Uses
Historically, the belowground part is mainly used in liquid 

preparations such as juices, but before consumption they 
are boiled to make it softer [65, 66]. According to popular 
belief, it has aphrodisiac properties and its use is related to 
improvement of sexual performance and female fertility, 
rheumatism, to treat rheumatism and respiratory diseases, and 
as laxative. Curiously, it is widely used to assist reproduction 
of pigs, chickens and horses [67]. During the Inca empire, 
there was a legend that warriors were fed Lepidium meyenii 
to increase their energy and vitality, and at the end of wars 
soldiers were forbidden to consume the plant to protect 
women from their sexual impulses. In addition, it was also 
used as active ingredient in hallucinogenic beverages as part 
of religious ceremonies [67]. Lepidium meyenii was at the 
brink of extinction, but largescale cultivation of the plant for 
production of plant-based products that promised to improve 
sexual performance changed this scenario, strengthening the 
plant’s trade even to other countries. Nowadays, Lepidium 
meyenii cultivation represents an important source of income 
for local family.

Nutritional Composition of Lepidium 
meyenii 

The nutritional composition of the belowground part of 
Lepidium meyenii shows great variations that are dependent 
of differences of phenotype, place of cultivation, type of 
soil, environmental conditions, and time of harvest. Chen 
et al. assessed the nutritional composition of seven cultivars 
of Lepidium meyenii, one from Peru and six from China [8]. 
Interestingly, the Peruvian cultivar showed systematically 
lower levels of proteins, total dietary fibers, as well as soluble 
and insoluble dietary fiber as compared to the Chinese 
cultivars. Crude lipids, however, were found at almost same 
levels in all cultivars. Despite the fact that the Peruvian cultivar 
showed lower levels of proteins as compared to the Chinese 
cultivars, the content of essential amino acids were higher in 
the Peruvian cultivar than in the Chinese cultivars, whereas 
the content of nonessential amino acids did not show a clear 
pattern [8]. Additionally, the different cultivars showed similar 
levels of minerals and total Alkaloids, whereas the Peruvian 
cultivar showed lower levels of Benzyl Glucosinolate and 
N-Benzyl hexadecanamide than in the Chinese cultivars. Li 
et al., assessed the nutritional composition of one Lepidium 
meyenii cultivar from Xinjiang-China [60]. Compared to the 
work of Chen et al., the Xinjiang cultivar showed average 
water, glucosinolate and Lepidium meyeniimide contents and 
higher protein levels than the Peruvian cultivar, but lower 
protein levels as compared to the other six cultivars [8]. It also 
showed higher lipid levels, but lower alkaloid content than all 
7 cultivars tested by Chen et al. [8]. These results highlight 
that the nutraceutical properties of Lepidium meyenii is not 
only cultivar-dependent, but also it depends on the color of 
the belowground part and place of cultivation.

The average nutritional value of Lepidium meyenii is 
presented in table 1. Water content varies from 7.01 to 
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10.4%, protein content varies from 9.56 to 13.42%, and lipids 
content varies from 0.88 to 1.42%. The average contents of 
hydrolyzable carbohydrates, total dietary fibers, soluble dietary 
fibers, and insoluble dietary fibers are 59.0%, 18.25%, 3.37%, 
and 14.88%, respectively. Micro and macronutrients are also 
displayed (Table 1).

a: Dried yellow Lepidium meyenii root collected from 
Xinjiang Province, adapted from Li et al. [60].

b: Dried hypocotyl cultivated in Peru and phenotype not 
characterized, adapted from Dini et al. [68].

c: Dried yellow Lepidium meyenii hypocotyl cultivated in 
Peru, adapted from Chen et al. [8].

Phytochemicals
The main phytochemicals found in Lepidium meyenii can be 

categorized into six classes: glucosinolates and isothiocyanates 
[54, 59, 63, 68-72], macaene and macamides [47, 58, 73-81] , 
alkaloids [52, 82-84], thiohydantoins [85-87], polysaccharides 
[43, 44, 51, 55, 77, 88-93], and fatty acids [46, 77, 78, 94, 95]. 
Here, we discuss the in-depth contribution of polysaccharides 
to the nutraceutical properties of Lepidium meyenii.

Polysaccharides are carbohydrates composed by several 
units of monosaccharides linkd by glycosidic bonds. In plants, 
they are important as energy reserves, for structural functions, 
and as precursors of various compounds synthesized by plants. 
Additionally, they present biological properties crucial for 
human health, such as immunological [56], antioxidant [96], 
and neuroprotective [97, 98]. Several polysaccharides have 
already been isolated from Lepidium meyenii hypocotyl and 
are generally heteropolysaccharides composed primarily of 
glucose, arabinose, galactose, rhamnose and mannose [43-45, 
56, 91, 99, 100-102]. Lepidium meyenii polysaccharides have 
shown to possess antioxidant [51, 99], anti-fatigue [43-45], 
cell protective [49, 99], and immunomodulatory properties 
[93, 101, 102]. Therefore, these polysaccharides contribute to 
the nutraceutical properties of Lepidium meyenii.

Biological and Pharmacological Activities 
Antioxidant activity

The antioxidant activity of the aqueous extract of Lepidium 
meyenii hypocotyl was assessed by using different scavenging 
assays protocols. It has been demonstrated that Lepidium 
meyenii extracts acts in the detoxification of free radicals, in 
the reduction of cell death induced by peroxynitrite and in the 
protection of cells against hydrogen peroxide by maintaining 
the production of ATP at optimum levels, since under 
oxidative stress conditions the cellular production of ATP 
is reduced. Thus, aqueous extract of Lepidium meyenii have a 
protective effect on oxidative cellular damage. This is closely 
related to the presence of flavonols and isothiocyanates, since 
these compounds present a potential antioxidant [104-106]. 
Scavenging activity by 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid) (ABTS) assay demonstrated that Lepidium 
meyenii leaf methanolic extract has greater antioxidant activity 
(2262.37 μmol of trolox EQ/100 g) than aqueous (1305.36 

Table 2: Polysaccharides isolated from Lepidium meyenii

Polysaccharide Monosaccharide composition Reference

LMP arabinose, galactose, glucose, and rhamnose [100]

LMP-1 arabinose and glucose [101]

LMLP arabinose, galactose, glucose, mannose, and 
rhamnose [63]

MC-1 arabinose, galactose, glucose, and mannose 
[102]

MC-2 arabinose, galactose, glucose, and mannose

MLP-1 arabinose, galactose, glucose, mannose, 
rhamnose, ribose, and xylose [51]

MLP-2 Glucose

MP arabinose, galactose, glucose, and mannose [44]

MP1 arabinose and galactose [9]

MP-1 arabinose, galactose, galacturonic acid, 
glucose, rhamnose, and xylose [49]

MP21 arabinose, galactose and rhamnose [93]

M-PL arabinose, galactose, glucose, and mannose [45, 103]

MPS-1 arabinose, galactose, glucose, and xylose
[43]

MPS-2 arabinose, galactose and glucose

Table 1: Nutritional composition of Lepidium meyenii dry hypocotyl.

Nutrient (%) (mg/kg)

Water 7.01a - 10.4b  

Proteins 9.56c- 13.42 a  

Lipids 0.88c - 1.42a  

Hydrolyzable 
carbohydrates

59.0b  

Total dietary fibera 18.25c  

Soluble dietary fibera 3.37 ± 0.18 c  

Insoluble dietary fibera 14.88 ± 0.15  

Minerals    

Copper (Cu)   4.3c - 5.9a

Manganese (Mn)   11.2a, c

Zinc (Zn)   26.5c - 30.7a

Iron (Fe)   70.4c - 82.4a

Sodium (Na)   150.2

Magnesium (Mg)   737.7c - 847.5a

Calcium (Ca)   4128.8c - 13700.0a

Potassium (K)   8063.3c - 11700.0a

a: Dried yellow Lepidium meyenii root collected from Xinjiang Province, 
adapted from Li et al. [60]
b: Dried hypocotyl cultivated in Peru and phenotype not characterized, 
adapted from Dini et al. [68]
c: Dried yellow Lepidium meyenii hypocotyl cultivated in Peru, adapted 
from Chen et al. [8]
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μmol of trolox EQ/100 g) and dichloromethane (246.42 
μmol of trolox EQ/100 g) [53]. Scavenging activity by 
2,2-diphenyl-1-picrylhydrazyl (DPPH) assay supported the 
results of Rodríguez-Huamán et al. [53] that Lepidium meyenii 
methanolic extract showed the best antioxidant activity 
results. Additionally, the yellow and black cultivars showed 
the most promising results [107]. The hydroalcoholic extract 
of black Lepidium meyenii hypocotyls presented a variation 
in the percentage of the antioxidant activity from 3.59% (at 
concentration of 0.03 mg.mL-1) to 42.19% (at concentration 
of 0.40 mg.mL-1) [108].

Polysaccharides isolated from Lepidium meyenii leaves 
have strong antioxidant activity. MPL-1 showed percent 
inhibition of 82.71%, whereas MPL-2 showed percent 
inhibition of 79.07%. These values are close to that found in 
vitamin C (99,68%), used as a positive control [51]. Another 
polysaccharide, MP1, extracted from Lepidium meyenii 
hypocotyl also had the antioxidant activity analyzed by DPPH 
radical scavenging assay. By using concentrations of MP1 that 
ranged from 100 to 1000 µg.mL-1, the authors demonstrated 
that MP1 was able to consume DPPH radicals in the range of 
9.12-31.23%, suggesting that MP1 exerted moderate DPPH 
radical scavenging activity [99].

Yábar et al., evaluated the antioxidant activity and the 
phenolic compound profile of yellow, red and black Lepidium 
meyenii cultivars [54]. Chromatographic analysis showed the 
presence of 11 phenolic compounds: six flavanol derivatives, 
four benzoic acid derivatives and one o-coumaric acid 
derivative. The authors claimed that improving cultivation 
techniques and post-harvest management could enhance 
antioxidant activity and to preserve the content of phenolic 
compounds in Lepidium meyenii extracts.

Cytoprotective activity
Cells are constantly exposed to factors that can cause cellular 

damage. Some of these factors are reactive oxygen species 
(ROS) that are subproducts of aerobic metabolism. There are 
several types of ROS, such as superoxide anion (O2-), hydrogen 
peroxide (H2O2), hydroxyl radicals (OH.), and singlet oxygen 
(1O2). Low levels of ROS production are important to maintain 
normal physiological functions in the organisms. But in some 
conditions, the production of ROS exceeds the antioxidant 
capacity and the oxidative stress is caused, which can generate 
cells and tissues damage [109, 110].

Treatments of RAW264.7 macrophage cells with 
polysaccharide MP1 isolated from Lepidium meyenii roots 
have demonstrated cytoprotective effect of this compound. 
Initially, cells were treated with varying concentrations of MP1 
(0-1000 µg.mL-1) and cultivated for 24 h, then the H2O2 was 
added and cultivated for 1h. Markers of oxidative stress, such as 
malondialdehyde (MDA), lipid peroxidation marker and lactate 
dehydrogenase (LDL) were analyzed. It was demonstrated that 
the increase in both MDA and LDL was lower in the MP1 
treated group compared to the group treated only with H2O2. 
These highlights that the group treated only with H2O2 showed 
higher production of ROS than the group treated with 1000 
µg.mL-1 of MP1. Therefore, MP1 showed protective effect on 

H2O2-induced injure RAW264.7 cells [99].

Yu et al., showed that not only polysaccharides, but also 
macamides may exert protective effects [47]. For that, they 
assessed the protective effects of macamides on corticosterone-
induced (CORT) neurotoxicity in rat pheochromocytoma 
(PC12) cells. They showed that macamides were able to reduce 
CORT-induced neurotoxicity, by increasing cell viability, 
reducing LDH release and preventing intracellular ROS 
generation. These results demonstrate the great potential of 
macamides to treat neuronal damages.

Immunomodulatory activity
The immune system is the set of cells, tissues, substances 

and mechanisms involved in protecting the organism against 
the action of exogeneous pathogens such as viruses, bacteria, 
toxic substances and allergens. Plant extracts and isolated 
compounds have demonstrated immunomodulatory effect 
on macrophages, the main cells of the defense system [111]. 
The defense action of macrophages against inflammation 
and infection is based on the phagocytosis of the pathogen 
or allergen and the synthesis of pro-inflammatory cytokines, 
such as interleukins, tumor necrosis factor (TNF-α) and 
chemokines, as well as, the production of reactive oxygen 
species (ROS) and reactive nitrogen intermediates such as 
nitric oxide (NO) [112].

The polysaccharide MP21 was extracted and purified from 
dry Lepidium meyenii roots. Different concentration of MP21 
(62.5-1000 µg.mL-1) were incubated with RAW264.7cells 
for 48 h. MP21 enhanced the phagocytic capacity and induce 
higher synthesis of NO, ROS, TNF-α, and IL-1β secretion 
in RAW264.7 cells. Therefore, MP21 has been shown to 
stimulate the innate immune system by modulating the 
action of macrophages [56]. The polysaccharide (LMLP) 
extracted from dried Lepidium meyenii leaves also stimulated 
the proliferation and the phagocytosis of RAW264.7 cells 
[113]. The polysaccharide (LMP-1) extracted from dried roots 
stimulated the expression of inflammatory factors (TNF-α, 
IL-1β and IL-6) in macrophages in a dose dependent 
manner [101]. Taken together, these results highlights 
great contribution of polysaccharides to Lepidium meyenii 
nutraceutical properties.

In an interesting study, Ren H evaluated the effect of 
supplementation with Lepidium meyenii in box athletes [114]. 
They have assessed the profile of red and white blood cells, 
as well as immunoglobulin (Ig) in the blood of the athletes 
in responses to the supplementation. Curiously, there was no 
differences in the levels of red blood cells, but white blood cells 
and IgA, IgM and IgG increased as compared to the control 
group. The authors then suggested that supplementation with 
Lepidium meyenii improve the immune function by raising the 
level of white blood cells and Ig in box athletes.

Anti-fatigue effect
Fatigue causes general tiredness and can be classified as 

physical or mental. Mental fatigue is usually caused by excessive 
mental work or sleep deprivation, whereas physical fatigue is 
usually caused by excessive exercises and inadequate recovery 
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[115, 116]. Lepidium meyenii extracts and isolated compounds 
show a beneficial effect for the reduction of fatigue. Choi et 
al., [117] demonstrated that after 3 weeks of supplementation 
with 30 and 100 mg.kg-1 of liposoluble extract from yellow 
Lepidium meyenii (obtained using supercritical carbon 
dioxide as solvent), the swimming time to exhaustion of mice 
increased by up to 41% as compared to the control group. 
It was also observed a reduction in oxidative stress caused 
by intense exercise, as measured by reduced levels of muscle 
lipid peroxidation, increased amount of total glutathione and 
increased activity of hepatic catalase (Choi et al., 2012) [117]. 
The aqueous extract of Lepidium meyenii was used in different 
concentrations (4, 10, 20 and 40 mg.g-1) to evaluate the 
performance of rats during swimming. The duration of activity 
increased progressively over the 21 days of supplementation 
compared to the control group. The swimming time (minutes) 
of the supplemented group with 40 mg.g-1 of the extract was 
19.33 on the 14th day and 21.37 on the 21st day of treatment. 
The control group obtained a time of 11.34 on the 14th day 
and 10.88 on the 21st day [118].

Supplementation with polysaccharides MPS-1, MPS-2 
[43], and MP [44] (100 mg.g-1) isolated from yellow Lepidium 
meyenii hypocotyls contributed to the anti-fatigue effect by 
improving antioxidant activity, helping to reduce metabolic 
products, which are related to fatigue, such as lactic acid 
and urea nitrogen. Therefore, supplementation improved the 
activity of glutathione peroxidase (GSH-PX) and lactate 
dehydrogenase (LDH), strengthening the antioxidant capacity, 
and potentiated the action of creatine kinase (CK), which 
contributes to the faster formation of ATP, generating more 
energy. Supplementation also increased the duration and speed 
of swimming in proportion to the increase in polysaccharide 
concentrations in the samples [43, 44].

Supplementation with polysaccharide M-PL extracted 
from fresh Lepidium meyenii hypocotyls also showed anti- 
fatigue effect. Forty mice were randomly divided into 
four groups: a) high dose (0.05 mg.g-1), b) medium dose  
(0.03 mg.g-1), c) low dose (0.01 mg.g-1), and blank control 
group (normal saline). It was observed that the swimming 
time to exhaustion of the supplemented mice was 44.2 min, 
considerably higher than the control group (14.44 min). 
Muscle glycogen was greater in the high dose group (19.08 
mg.g-1) compared to the control group (6.74 mg.g-1). This shows 
that supplementation with Lepidium meyenii polysaccharides 
reduced the expenses of energy reserves during exercise. This 
is important since the faster these reserves are spent the faster 
the feeling of fatigue will be present [45].

Supplementation with petroleum ether extract from 
Lepidium meyenii roots (40 mg.g-1) in mice for 21 days improved 
swimming time to exhaustion and reduced lactate, serum 
ammonia levels and LDH activity, whereas increased superoxide 
dismutase (SOD) and GSH-PX in the brain, liver and muscle. 
Moreover, the control group had an increase in hepatic glycogen 
and non-esterified fatty acids, suggesting that supplementation 
reduced glycogen expenditure and increased lipid metabolism 
as an energy source during exercise. These show that the use of 
Lepidium meyenii can improve the activity of antioxidant enzymes 
and reduce the peroxidation in these tissues [46].

Benefits in sexual performance and spermatogenesis
 Lepidium meyenii extracts are known to improve sexual 

performance. To confirm this specific traditional use of the 
plant, forty-five male mice were supplemented with lipid 
extract from Lepidium meyenii (40 mg.g-1) for 22 days. Zheng 
et al., observed increased intrusions (introduction of the male 
sexual organ into the female sexual organ) by the male mice 
after 3 hours of observation and greater amount of sperm in 
female mice (n=90) during mating as compared to the control 
group [119]. In contrast, Lentz et al. [120] showed that 
supplementation with an aqueous solution of the Lepidium 
meyenii in concentrations of 25 and 100 mg.g-1 for 21 days did 
not have any effect on the number of intrusions group, as well 
as in the number of ejaculations as compared to the control 
group. It is difficult to compare both results straightaway since 
they have used different concentrations and solvents to prepare 
the extract. Nevertheless, it is clear that the lipidic fraction is 
richer in compounds related to the improvement of the sexual 
performance than the aqueous extract.

In an attempt to extrapolated the results for human subjects 
Dording et al. [121] supplemented individuals diagnosed with 
depression and using SSRI drugs (selective serotonin reuptake 
inhibitors) with Lepidium meyenii (1.5 g/day and 3.0 g/day) 
for 12 weeks. These individuals showed sexual dysfunction, 
exclusively after starting the medication. They showed that 
individuals supplemented with the highest dose of Lepidium 
meyenii (3.0 g/day) showed improved libido [121]. In a similar 
study, fifty men diagnosed with mild erectile dysfunction were 
treated with dehydrated Lepidium meyenii root tablets (1200 
mg) twice a day for 12 weeks. They showed that individuals 
supplemented with Lepidium meyenii root tablets showed 
improved physical, social, and sexual performance in relation 
to the control group [33].

Supplementation with aqueous extract of black Lepidium 
meyenii (1.66 g/Kg/d) for 42 days increased sperm count in 
the epididymis of rats as compared to the control group [27]. 
Similarly, supplementation with the hydroalcoholic extract of 
black Lepidium meyenii (50 mg/d) for 7 days increased daily 
sperm production and sperm count in the epididymis of rats as 
compared to the control group [108]. In addition, sperm from 
rats treated with yellow Lepidium meyenii powder (20 g/d) for 
60 days were evaluated and sperm samples from supplemented 
rats showed greater mobility, acrosome integrity and less DNA 
fragmentation compared to the control group [122].

Osteoporosis-preventive activity 
Especially after menopause, there is an increased 

probability of women developing osteoporosis, especially by 
reducing hormone levels that are important in calcium and 
bone metabolism, such as estrogen [123]. To mimic this low 
hormone production and its consequences, Zhang et al. [38] 
performed ovariectomy in female rats and verified greater 
values of the diameter and width of the femoral bone, as 
well as bone mineral density in rats treated with ethanolic 
and hydroalcoholic extract of Lepidium meyenii in relation 
to the control group. Thus, a beneficial effect in preventing 
bone loss in case of estrogen deficiency was observed upon 
supplementation with Lepidium meyenii extracts.
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Effects on the process of learning, depression and memory
Supplementation of aqueous extract of different Lepidium 

meyenii cultivars (yellow, red and black) for 21 days was used 
to assess learning skills in rats. After supplementation, rats 
were subjected to a field with an alcove, in which they had 
to enter and drink water. The rats supplemented with the 
three types of Lepidium meyenii entered the alcove, found and 
drank water in shorter time than the control group [124]. The 
same study carried out another test to assess aspects related to 
depression, and the rats were submitted to an antidepressant 
activity, which consisted of a forced swimming test. The rats 
supplemented with yellow, black and red Lepidium meyenii 
showed a reduction in immobility time, demonstrating that 
they were more active and were more stimulated to escape 
compared to the control group [124].

Reactive oxygen species (ROS’s) are associated with the 
development of neuropsychiatric problems such as depression 
leading to oxidative stress and brain tissue damage, and 
high levels of corticosterone are also associated with greater 
symptoms of depression [125, 126].The use of petroleum 
ether extract from Lepidium meyenii (250 and 500 mg/kg) for 
6 weeks reduced the activity of ROS in brain tissue and serum 
corticosterone levels [127].

Rats were subjected to the Moris labyrinth test, which 
consists of a circular pool divided into quadrants with an 
escape platform in one of these quadrants. Supplementation 
with black Lepidium meyenii hydroalcoholic extract (0.125, 
0.25, 0.50, and 1.0 g/Kg) for 28 days reduced the time that the 
rats managed to escape through the platform Thus, indicating 
that supplementation with black Lepidium meyenii extracts has 
been shown to improve memory skills.

Protection against ultraviolet radiation
Ultraviolet (UV) radiation is a toxic environmental factor 

and may increase the synthesis of inflammatory and ROS 
mediators, cause cell lesions and DNA damage, which can 
subsequently generate mutations in skin cells and predispose 
to cancer [128]. The exposure of humans to sunlight without 
righ protection, such as sunscreens, is the main way of exposing 
themselves to this radiation [129].

Mice were submitted to topical use of the Lepidium meyenii 
hydroalcoholic extracts and then the animals were placed at 15 
cm from the source of radiation. The topic use of yellow, red 
and black Lepidium meyenii hydroalcoholic extracts generated 
less epidermal hyperplasia, sunburn cells and leukocytic 
infiltration, compared to untreated irradiated [39, 130]. These 
results suggest a positive effect of Lepidium meyenii extracts 
treatment on skin changes caused by UV radiation. Although 
isolated compounds have not been tested, Lepidium meyenii 
has phenolic compounds, which are the responsible for the 
antioxidant activity of the plant and can justify this effect. 
The glucosinolates present in the extracts may also justify its 
antioxidant activity, since they might act as one of the defense 
substances of these plants against exposure to UV radiation. 
Therefore, products based on Lepidium meyenii may be another 
option of use for protection against UV radiation.

Concluding Remarks
 Lepidium meyenii is an extremely versatile nutraceutical 

plant species. Here, we have demonstrated the great potential of 
this species for dietary supplementation in animals and humans, 
since Lepidium meyenii extracts possess great nutritional value 
and many important biological activities. These biological 
activities include antioxidant, anti-inflammatory, antimicrobial, 
cytotoxic, and immunomodulatory activities. The nutraceutical 
properties of Lepidium meyenii depend on the phenotype, 
place of cultivation, type of soil, environmental conditions, and 
time of harvest. Additionally, we have demonstrated that diet 
supplementation with Lepidium meyenii may exert several health 
prophylactics benefits. In-depth studies aiming at identifying 
and characterizing new bioactive compounds from Lepidium 
meyenii is crucial for the development of drugs as well as more 
efficient phytochemical based products.
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